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1. Micro-Doppler

    Signatures



Application of Human Monitoring Using Electromagnetics

- Human detection and tracking are topics of 

recent interest because of the increased conc

erns regarding security and surveillance.

- Can also be applied in disaster search-and-r

escue operation, physical security, law enforc

ement, and border patrol.

-  Important topic for the autonomous vehicle 

development. 



Objective: Continuous monitoring human activities through 

Electromagnetics

- Human computer interface

- Walking style analysis

- Patient monitoring

- Senior fall detection

- Cardiopulmonary motion analysis  

- Life pattern analysis (Long-term correlation) 

Application to Civilian

- However, human detection poses a distinct challenge because humans are generally present in highly cluttered 

environment with the presence of other moving targets such as animals. 

Application of Human Monitoring Using Electromagnetics



Micro-Doppler Signatures

(1) Vibration

(2) Rotation
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(1) Through-wall capability 

(2) Suppress stationary subjects

(3) Micro-Dopplers

(4) Easy to measure

(5) Low cost

Merits of using Doppler information:

Doppler Information from Target

-Detection and analysis of a movin

g human with Doppler information 

-Extracting unique signatures of a h

uman subject
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Measuring Moving Subjects using Doppler Radar

Problem Setup (Assumption)

1. Human moves toward the radar.

2. Classify only periodic human activities.

3. Single target case. 

Doppler Sensors

<Spectrogram>

Micro-Dopplers

Micro-Dopplers might give us information about human activity.



Target Measurement Using Doppler Radar

(a) Human                    (b) Dog                    (c) Bicycle                    (d) Car

Micro-Doppler Signature

- Generated from the non-rigid body motion

- Unique pattern depending on target motion like vibration & rotation

- Modulated components to the torso Doppler

- Overlapped signature in joint time-frequency domain

<Y. Kim, S. Ha and J. Kwon, "Human detection using Doppler radar based on physical characteristics of targets," IEEE Geoscienc

e and Remote Sensing Letters, vol.12, pp. 289 – 293, Feb. 2015.>



Spectrograms of Different Activities 

BoxingCrawling

Running

Still

Walking

Walking w/o moving arms Boxing with moving forward
Still



Feature Extraction from Spectrogram 

Feature Extraction

Features: 1. Doppler Freq of Torso                       6. Signal valiance

2. Bandwidth

3. Offset of Bandwidth

4. Bandwidth without Micro-Doppler

5. Period (Swing Rate)

BW

BW w/o Micro-Doppler

Period

3 sec  Window

Subjects: 12
Activity: 7
Realization: 1
2



Support Vector Machine (SVM)

Developed by Vapnik

Binary Classifier

Based on linear  hyper-plane.

Maximizing margin is a convex optimization 

with inequality constrained.

Only support vector will affect the result of 

optimization.

Kernel trick is used.
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Human Activities Classification using SVM
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Accuracy = 91% Accuracy = 93%

<Y. Kim and H. Ling, “Human activity classification based on micro-Doppler signatures using a support vector machine,” IEEE Transactions o

n Geoscience and Remote Sensing, vol. 47, pp. 1328 –1337, May 2009.>



• Main idea : Learn features (“representations”) from data too

 → Then, everything can be learned end-to-end!

• Inspired by human brain, use deep neural networks

[Human’s visual cortex]

Deep Learning

[Deep neural network]

vanishing gradient

x1

x2

y1

y2

backward error information vanishing

Issues: 

- Gradient

- Local optimal 



- Sparse, shared weights

Parameters

: filter weights/size, stride

Convolution operator Feature maps

Ex) edge detector

Convolution filters (kernels)



Apply a classifier on extracted featuresApply a classifier on extracted features

- Devise hand-crafted features

- Requires some domain knowledge

Run

BW

Period

Density

…..

Micro-Doppler Classification by Supervised Learning



(Convolution + Activation function + Pooling) x k layers

+ Fully connected layer + Classification layer

Convolution Pooling Convolution Pooling
Fully connecte

d

Deep Convolutional Neural Networks (DCNN)

Results: - After 5 fold validation, the average classification accuracy is 91%.

<Y. Kim and T. Moon, “Human detection and activity classification based on micro-Dopplers using deep convolutional neural networks,
” IEEE Geoscience and Remote Sensing Letters, vol. 13, pp.2-8, Jan. 2016.>



What affects the classification accuracy?

Micro-Doppler Classification using DCNN



• 𝑓𝐷 =
𝑓𝐶

𝐶
∙ (𝑇𝑥 − 𝑅𝑥) ∙ Ԧ𝑣    => Carrier frequency determines the max Doppler frequency.  

• Nyquist’s sampling theorem => Sampling frequency determines the max Doppler frequency 
that can be sampled without aliasing + time resolution. 

• (a) Walk motion spectrogram fC = 1.5GHz and fS = 1200Hz

• (b) Walk motion spectrogram fC = 30GHz and fS =  1200Hz

(a)                                (b) 

Radar Parameters in JTFA

Impact of fc



• (a) Run motion spectrogram fC = 15GHz and fS = 200Hz 

• (b) Run motion spectrogram fC = 15GHz and fS = 1200Hz

(a)                                (b) 

Impact of fs

• 𝑓𝐷 =
𝑓𝐶

𝐶
∙ (𝑇𝑥 − 𝑅𝑥) ∙ Ԧ𝑣    => Carrier frequency determines the max Doppler frequency.  

• Nyquist’s sampling theorem => Sampling frequency determines the max Doppler frequency 
that can be sampled without aliasing + time resolution.

Radar Parameters in JTFA



Three human motions spectrogram when fC = 10GHz and fS = 600Hz 

(a) Run (b) Run with box (c) Walk.

(a)                                (b)                                (c)

When we use the fixed radar parameters………………   there are some problems!

• High sampling frequency :  Requires large memory fast computing hardware

• Low sampling frequency :  Cause low time resolution and aliasing 

• Necessary to find the optimal radar parameters depending on human motions. 

Radar Parameters in JTFA



2. Cognitive Radar



• Nature has inspired creative endeavors in all facets of human intellect.

• Adaptive radars have the capability of changing the processing of received 

data as a function of time, while “fully” adaptive radar have the capability to 

adapt on transmit.

• Cognitive radar (=fully adaptive radar) evokes a vision of biomimetic artificial 

intelligence fully integrated into the sensing process, emulating human 

perception.

<Gurbuz, Sevgi Zubeyde, et al. "An overview of cognitive radar: Past, present, and future." IEEE Aerospace and 

Electronic Systems Magazine 34.12 (2019): 6-18.>

Concept and Background of Cognitive Radar



• In traditional radar systems, the 

information flow is one-way so that the 

radar interrogates its surroundings by 

transmitting a fixed, predefined waveform 

regardless of any changes in the 

environment.

• Current research on cognitive radar aims 

at two-way interaction of the radar with its 

environment by developing not only the 

adaptive hardware and analytical 

techniques, but also stochastic control, 

optimization, ML, and AI. 

Concept and Background of Cognitive Radar

<PAC>



Concept of Cognitive Radar

- Cognitive radar refers to a type of radar system that incorporates cognitive capabilities, such as artificial intelligence (AI) and 

machine learning, to enhance its performance and adaptability. Cognitive radar systems have the ability to learn from their 

operating environment, make informed decisions, and adjust their settings in real-time based on the changing conditions.

Advantage of Cognitive

1.Adaptability : Dynamically adjust their operating parameters and configurations in response to changing environmental 

conditions. This adaptability allows them to maintain optimal performance.

2.Learning and Improvement : Learn from past experiences and data, allowing them to continuously improve their 

performance over time. They can identify patterns, anomalies, and new threats that might not be recognized by fixed 

algorithms.

3.Improved Performance: Target detection and classification accuracy, even in cluttered or noisy environments using AI.

4. Countermeasures and Anti-jamming: Adapt its strategies in response to intentional interference or jamming attempts, 

making it more resilient and effective against electronic warfare tactics.

Radar parameters that can be changed:  Frequency, Waveform, Bandwidth, PRF,  polarization and so on.

Concept and Background of Cognitive Radar



• Develops a general cognitive radar framework for a radar system engaged in target 

detection and tracking and shows the cognitive radar offers significant performance 

gains over a standard feed-forward system.

Bell, Kristine L., et al. "Cognitive radar framework for target detection and tracking." IEEE Journal of Selected Topics in Signal 

Processing 9.8 (2015): 1427-1439.

Example of Cognitive Radar -1

• The system consists of:

- The scene;    the target and the environment

- The sensor;   observes the scene

- The processor;   converts the observed data 

into a perception of the scene

- The controller;   the novel component. It 

decides on the next value for the sensor 

parameter by minimizing a loss function LC.



• In a high-resolution case, the static 

system has similar or a little better 

performance for the track initiation and 

termination than the cognitive radar 

(BLR is higher for the equal sensor 

parameter when k=5 (the target is 

present) and k=50 (the target 

disappears))

• The PC-CRLB is higher for the static 

system than the cognitive system while 

the target is under track.

Example of Cognitive Radar - 1



• In a low resolution, the static system 

shows significantly pooper 

performance. The PC-CRLB is much 

higher and the BLR is much lower 

than for the cognitive system.

• These two examples show that the 

cognitive system makes better use of 

the system resources and achieves 

better tracking performance than the 

static system.

Example of Cognitive Radar - 1



• Illustrated cognitive approaches for target classification within a three-layer cognitive 

radar architecture. The skill-based layer represents subconscious, the rule-based layer 

represents reactive behavior, and the knowledge- based layer provides goal-oriented 

computation in unfamiliar situations.

Brüggenwirth, Stefan, et al. "Cognitive radar for classification." IEEE Aerospace and Electronic Systems Magazine 34.12 

(2019): 30-38.

Example of Cognitive Radar - 2



• DL methods are well suited to bridge the gap between the radar input data and 

higher level semantic processing. 

• First results of adaptive waveform design were shown, however, further 

experimental validation is required

• For an optimal performance, consistent behavior generation on all three 

abstraction layers is required. This remains a major challenge in the design and 

implementation of comprehensive cognitive radar architectures

Example of Cognitive Radar - 2



• Presents the application of the fully adaptive radar 

(FAR) framework for cognition to a distributed radar 

network. Multiple instances of the FAR framework 

were arranged hierarchically.

Mitchell, Adam E., et al. "Single target tracking with distributed cognitive radar." 2017 IEEE Radar Conference (RadarConf). 

IEEE, 2017.

• Two monostatic radar nodes 

are connected through a 

fusion center, and their 

transmitted waveforms are 

adapted in real-time.

Example of Cognitive Radar - 3



• Both approaches successfully tracked the target, 

but the adaptive system produced a tighter track 

when the target changed directions at the center 

point.

• The fixed parameter system yielded average root 

mean squared errors (RMSE) , of 0.517 m in 

position and 0.653 m/s in velocity, while the 

adaptive system resulted in marginally better 

tracking performance; the average RMSE was 

0.498 m in position and 0.630 m/s in velocity.

Example of Cognitive Radar - 3



• With adaptive parameter, PRF and Np 

were successfully adjusted to keep the 

velocity and range standard deviations 

near or below the goal values. 

• Experimental results confirmed that 

hierarchical FAR processing could 

yield a reasonable RMSE at all levels 

of the cognitive structure while 

adapting waveform parameters in real 

time to track a human target.

Mitchell, Adam E., et al. "Single target tracking with distributed cognitive radar." 2017 IEEE Radar Conference 

(RadarConf). IEEE, 2017.

waveform parameter fixed adaptive waveform param. 

Example of Cognitive Radar - 3



• Proposes an intelligent cognitive radar 
system for detecting and classifying the 
micro unmanned aerial systems (micro 
UASs). It designed a low-complexity 
binarized deep belief network (DBN) 
classifier that recognizes the signature 
patterns generated by using a Doppler 
radar based solution.

Mendis, Gihan J., Jin Wei, and Arjuna Madanayake. "Deep learning cognitive radar for micro UAS detection and classification." 

2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017.

Example of Cognitive Radar - 4



• Low-complexity DBN shows above 

86% accuracy for detecting micro 

UASs even when the SNR level is as 

low as -5dB.

• The percentage of false alarm 

remains less than 10% for SNR > 0dB. 

Example of Cognitive Radar - 4



• Both low-complexity DBN and regular DBN outperform the MAXNET ANN based 

method.

• It can be concluded that that the low-complexity DBN performs comparably to the 

regular DBN for the classification of micro UAS SCF signature patterns. 

Example of Cognitive Radar - 4



• Introduces a cognitive radar system for autonomous robotic navigation. A major element in 

this work is how forms of artificial memory can be manifested, and how implementing them 

with a radar system can enhance collision-free navigation. 

• Memory in the cognitive functioning of the robot is essential for the robot to maintain a 

perception of obstacles outside of its field-of-view so that it can take appropriate obstacle 

avoidance action

Reich, Galen M., Michael Antoniou, and Christopher J. Baker. "Memory‐enhanced cognitive radar for autonomous 

navigation." IET Radar, Sonar & Navigation 14.9 (2020): 1287-1296.

Example of Cognitive Radar - 5



3. Reinforcement 

   Learning



Reinforcement Learning

What is RL ?

Training agents to make sequences of decisions in an environment 

in order to maximize a cumulative reward. It is inspired by 

behavioral psychology and is often used to model how humans 

and animals learn to perform tasks through trial and error.

RL learns a policy that can 

maximize the future rewards.

Example of RL:

Learn how to take actions in 
order to maximize reward?



Reinforcement Learning

What is difference between optimization and RL?

 - Optimization finds suboptimal or global optimal solution when the cost surface is fixed. 

 - RL a way to find suboptimal or global optimal solution in a complex cost surface.

- In RL problem, the cost surface changes with action/environment/time.

- At every time, the agent should determine the best sequential action to maximize pote

ntial return. 

- RL learns how to find the suboptimal solution.



Reinforcement Learning

Model: State Transition Probability

P(s’ | s1, at) = 0.8

Return: Sum of potential rewards

Gt = σ𝑘=0
∞ 𝑟𝑘 𝑅(𝑆𝑡+𝑘)

Value: Expectation of sum of potential re
wards

State value function:
V(s) = E(Gt | =s)

Action value function:
Q(s,a)

Policy: Finding an action that maximizing a return 
given a state 

a = π (s)

RL is the process to find the policy



Reinforcement Learning

Model-Based: Because the state transition probability is given, we can calculate the value function. 

Model – Free: - Monte Carlo

                        - Time Difference



4. Radar Parameter 

Optimization using RL

for Human Activity 

Classification



Classification Techniques for Human Micro-Doppler Signals
Utilization of Specific Vectors Extracted through EMD for Data Classification

Deep Learning(DCNN, RNN, GAN) Approaches for Human Micro-Doppler Signal Analysis

Goal of Research



The Quality of Spectrogram Images Affects the Performance of DCNN

Spectrogram Influences on Human Movement Characteristics and Radar Parameters (Carrier 

Frequency, Sampling rate)

Integrating Cognitive radar Concepts to Maximize DCNN Performance

Cognitive radar
Intelligent System for Adaptive Radar Parameter Adjustment Based on Prior Knowledge from 

Previous Observations and Databases

Goal of Research



Alexnet properties
Human motion type : running, run with box, 

run to crouch, crouch to run, skipping, walk, 

walk to hop to walk

# for each motion : 50

inputSize = [227 227 3]

Train data : Validation data = 0.76 : 0.24

Parameter Conditions
Carrier frequency : logscale 0.3125GHz ~ 

80GHz

Sampling frequency : logscale 10Hz ~ 

2560Hz

Radar is placed collinearly with the motion 

movement

Motion time duration : 1sec

Classification Accuracy with Radar Parameters



➢ Definition of Folding rate

Radar Parameters and Spectrogram Quality

Folding rate = 
2𝑓𝐷

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
 × 100 



Definition rate = Sampling rate

DCNN regression model properties
# for each motion : 500
inputSize = [656 875 3]
Train data : Validation data = 0.75 : 0.25
Minibatchsize = 32
maxEpoch = 50

Parameter Conditions
Carrier frequency : 20GHz

Sampling frequency : linscale 120Hz ~ 1200Hz

RMSE = 57.191

Radar Parameters and Spectrogram Quality



Alexnet properties
# for each motion : 50
inputSize = [227 227 3]
Train data : Validation data = 0.76 : 0.24

Near 100 Folding Rate Correlate 
with Improved DCNN Performance

Image Quality and DCNN Performance



Image Quality and DCNN Performance

Human motion Carrier frequency(GHz)

Run 4.2

Runwithbox 3.6

Runtocrouch 6

Crouchtorun 4.8

Skipping 11

Walk 13.5

Walk2hop2walk 6

Radar parameter(fC) when human motion spectrogram folding rate is 90

- Analysis of Individual Motion Detection Accuracy

- In activities involving rapid human movements, high carrier frequencies are required to 

compared to slower motions.



RL algorithm : Q-learning
Learning rate (𝛼) : 0.5

Discount factor (𝛾) : 0.95

Exploration rate (𝜀) : 0.1

Reinforcement Learning for Cognitive Radar

➢ 𝑄𝑓𝑟𝑒𝑞𝑠𝑎𝑚𝑝 𝑆𝑡 , 𝐴𝑡 ← 1 − 𝛼 ∙ 𝑄𝑓𝑟𝑒𝑞𝑠𝑎𝑚𝑝 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡 + 𝛾 ∙ 𝑄𝑓𝑟𝑒𝑞𝑠𝑎𝑚𝑝 𝑆𝑡+1, 𝐴𝑡  

➢  𝑄𝑓𝑜𝑙𝑑𝑏𝑙𝑢𝑟 𝑆𝑡, 𝐴𝑡 ← 1 − 𝛼 ∙ 𝑄𝑓𝑜𝑙𝑑𝑏𝑙𝑢𝑟 𝑆𝑡, 𝐴𝑡 + 𝛼[𝑅𝑡 + 𝛾 ∙ 𝑄𝑓𝑜𝑙𝑑𝑏𝑙𝑢𝑟 𝑆𝑡+1, 𝐴𝑡 ]

➢  𝐴 ← ቐ
𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄𝑓𝑟𝑒𝑞𝑠𝑎𝑚𝑝

𝑆 , 𝐴 + 𝑄𝑏𝑙𝑢𝑟𝑓𝑜𝑙𝑑
𝑆, 𝐴  𝜖 ≥ 𝜀 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝜖 < 𝜀 



Classification accuracy : 57.29% -> 98.3%
Environment when fC = 1Ghz, fS = 2000Hz, folding rate 

= 2, definition rate = 2000

Final agent : fC = 17Ghz, fS = 1450Hz, folding rate = 92, 

definition rate =1450

Reinforcement Learning for Cognitive Radar

Classification accuracy : 75.71% -> 97.38%
Environment when fC = 0.5Ghz, fS = 320Hz, folding rate 

= 20, definition rate = 320

Final agent : fC = 7Ghz, fS = 1270Hz, folding rate = 61, 

definition rate =1270



Case 1 : Low Folding Rate     -> Increasing the Folding rate

Case 2 : High Folding Rate    -> Decreasing the Folding rate

Case 3 : Low Sampling Rate  -> Increasing the Folding rate

Case 4 : High Sampling Rate -> Decreasing the Sampling rate

Reinforcement Learning for Cognitive Radar



Result
The application of reinforcement learning to cognitive radar systems effectively 

learns and optimizes radar parameters, leading to improved accuracy in 

classifying micro-Doppler signals

The adjustment of radar parameters to optimize spectrogram quality contributes 

to enhancing classification performance

Future Tasks
Enhancing Radar Performance through Application to Complex Motion Patterns

Radar Performance Enhancement Across Diverse Domains Using Complex 

Motion Patterns.

Conclusion



Thank you!
서강대학교 전자공학과
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