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Outline

O Computational Electromagnetics (CEM): Current state and challenges

0 Research Experience

» Research topic 1: ‘Multiphysics’ Electromagnetics
- Particle-in-Cell algorithms for high energy plasma modeling

» Research topic 2: ‘Multiscale’ Electromagnetics
- Lorenz-gauged A — @ solver stable over ultra-wideband (DC-to-Optics)

» Research topic 3: Quantum Electromagnetics/Optics
- Canonical quantization via numerical mode decomposition / Langevin noise formalism

O Concluding Remarks



Current State and Challenges of Computational Electromagnetics (CEM)

“Efficiency and Efficacy”
Maxwell’s equations —— Linearsystems A -x = b
¢/ Differential equations

¢/ Integral equations
¢/ High frequency approximation

Retrieved from [1]

Challenges

- « Modern wireless devices are highly integrated, exhibiting the
significant difference in the characteristic scale.

* * Non-classical effect-related issues (uncertainty, superposition,

or entanglement) need to be addressed in quantum information
science technology.

* In the state-of-the-art EM technology, multiphysics comes into
Reproduced from [2] an important play, e.g., kinematics, thermodynamics, etc.

[1] https://www.inas.ro/en/ansys-electronics-hfss, S. N. Makarov et al., IEEE reviews in biomedical engineering, vol. 10, pp. 95-121 (2017)
[2] J. Moreno et al., IEEE Aerospace and Electronic Systems Magazine, vol. 34, no. 7, pp. 18-31 (2019).



Applications of High Energy Plasmas

. i . Particle accelerators
High-power microwave devices

divergent z

Qﬁtmn beam /

| E_laser|

—1200
09000
0.6000

0.3000

-200 -150 -100
Max 1.423 xi (laser wavelengths)
Mt 1450010

I >1.4mm

Reproduced from [4]

inner poloidal |
magnetic field coils (ol current

toroidal
magnetic field coils

outer poloidal
magnetic field coils

gegis bolgess magnetopoz

van allen kugaklar

Fusion devices Astronomical/ b s

atmospheric effects

carpisma yayi p \ magnetik-atan-gizgitert

Retrieved from [3] Manyetik kalkan

Reproduced from [5]

[3] https://acee.princeton.edu/acee-news/10-facts-about-fusion-energy-via-magnetic-confinement/
[4] https://shvets.ph.utexas.edu/research/laser-wakefield

4
[5] http://www.theapproachinghour.com/earth/magnetic_shield/the_magnetic_shield_protecting_earth_magnetosphere.asp
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 Particle-in-Cell (1950)

Kinetics

Everything

Assign particles a speed and

location based on a distribution. Tra.c exeny
A particle, at all
Track super particles through L

space.

powerful

Many things captured, can get

velocity-space instabilities.

Most accurate
odel possible.

results like the linear

Magnetohydrodynamics Two Fluids Gyrokinetics
o The ;_)lasma is one continuous fluid Broak the ions & eloctrons into Only tr_ack supgrpamcles
Description - ions have all the mass, but z S 2 straight motion - and
two continuous, mingling fluids. | . 2
electron carry all the current. ignore the corkscrewing.
Simpla\bulkleffocts like il oapiates/mostoflKinetic
= 2 model, but much easier tq
Strengthens Easily solved. waves & reconnection can be
solve - can model an
understood. 5
entire Tokamak.
Most things not captured: most Many thlpgs nc?F f:aptured. Non-physical t;ehawor
A plasma instabilities, large over long times:
Weakness plasma waves, leakage, kinetic Sl = <
= b effects & non-equilibrium resonances & adiabatic
instabilities, structures etc. = i
effects. Assumes bell curves. invariants can be lost.
. Navier-stokes, Lorentz force, Navier-stokes, Lorentz force, |Vlasov-Maxwell Expansiol
Mathematics g S : 2 z
Maxwells' equations. Maxwells' equations. Equation

Numerical technique for Maxwell-Vlasov eqn.

(collisionless plasmsa)

Buneman, Dawson, Hockney, Birsall, Morse
CST PARTICLE STUDIQ VSim, CONPIC etc.

Plasma-based acceleration / fusion,

High power microwaves, Astrophysics

[1] https://en.wikipedia.org/wiki/Plasma_modeling

100

# of publications

Tough to solve: hard to apply to full
size reactors. Loses some effects:

Collisionles

Typically
impossible to

Klimontovich

including
 ‘Particle-in-Cell’
in title

la a llll.--I-.l-_l...l.l.l.I.l_
1970 1980 1990 2000 2010

year



https://en.wikipedia.org/wiki/Plasma_modeling

Viasov Equation

- Phase space distribution function: £

X, P, t)
Phase space consists of position and momentum (6-dim.).
It describes states of an ensemble with many particles.

- Vlasov eqn. (Boltzmann eqn. w/o collisions)

describes the time evolution of [collisionless]plasmas as

df (x,p,t) 8f
dt - ‘ at f+

Particles are uncorrelated and collectively interact
through long-range electromagnetic (Coulomb) forces.

Collisionless plasmas are hot (very fast) and dilute.

characteristic time . collisional time
characteristic length mean free path

P 4

Pendulum

C e )

\ Euclidean /

P ov,f=0




Coarse-Grained f(x,v,t) : “Super-Particle”

- The phase space volume is preserved
(incompressible) over time phase

p . . ’ - space
due to ‘collisionless’ feature. Vi, superparticle f,

e,l N,
F=>f  f=> 1 . *
s p=1 °
( Y (segmented ¢ )

species
Ve shape function N\

fo = qsCpS (x —%xp) S (v __Vp)
Space velocity - another option is with B-spline:
fp = qsCpd (x — %) 0 (Vv — vp) fp = qsCpBi (x —xp) 0 (Vv —vy)

Each superparticle usually represents millions of actual electrons or ions.
It results in a large reduction of the computational load.



Maxwell-Vlasov System (Multiphysics)

@ Derivation of equations of motion coupled to EM fields
= Applying ‘'Moment 0, 14, 1, into Vlasov equation,

///R%///Ri(...)dxdv/ \//W//Ag//ég("')'Vdde

O =V
VxH—a—DJrJ
Ot

4

. <
S Maxwell’s l i
equation b <
By Newton’s Jaw
of motion
' ‘




Electromagnetic Particle-in-Cell (EM-PIC)

- Numerical technique to solve Maxwell-Viasov system

- Updating (i) Maxwell’s fields and
(i1) Superparticle’s kinetic parameters marching on time

- Origin of the name ‘Particle-in-Cell’ (Particle-Mesh)
- 4 fundamental steps at each time update :

each time-update

“/_\. Example of PIC for Plasma ball expansion

Field- =
, Update \ a2 ol
H (@)
=,
m = | —, 60
= Q@ £ .
Scatter Gather 5 s,
0 ~
< 4 ® 3
, 23 -
Particle- | TR
pusher g 20 40 60 80
z [m]




Coarse-Grained f(x,v,t) : “Super-Particle”

PARTICLE-PUSHER . Lorentz force
= Newton’s law of motion
/_/R \
Xp Vp Tp >
Xp Vp Quantities not in mesh E (x,) B(x,)
SCATTER s Rn |
, % At GATHER
Quantltles in m;shm
Q J E B

5BDHPJ

_
discretized via
@ - CEM technique - %

FETD with unstructured meshes FIELD-SOLVE FDTD with structured meshes
4




How to Model High Energy Plasmas?

Maxwell-Vlasov equations

OB The linear theory is no longer
dx, VX E= T available (e.g., Lorentz-Drude
Q E = Vp ﬁe 3 model and gyroscopic description)
D
VxH=—+1J
d(vpVp) q ot
PP/ — _d_ Y
@ mo (Ep +vp X By)

Full description on kinematics ’ N Newt il
of charged particles in reaction o of mgﬁso':“”
to electromagnetic fields

is needed (via Maxwell-Vlasov
systems).

Multiphysics Involved

11



Utility and Limitations of Particle-in-Cell (PIC) Algorithms

80

60

40

20

each time-update

Field-

’ Update \

Scatter Gather J

\ Particle-
pusher

Example of PIC for Plasma ball expansion

uopenwis J|d-IN3  «- @ ®

"Wy ul Bulysiey

= Particle-in-Cell (PIC) algorithms
v/ Superparticles (each particle representing few millions of ( )
actual charged particles)
v/ Field-solver [] Gather [J Particle push [ Scatter Reenp

= [ssues in existing PIC algorithms

v/ Most of them have relied on
finite-difference time-domain methods
on structure meshes (low geometric fidelity).

20

40 60 80
z [m]

¢ The unstructured-mesh-based PIC has suffered from
the violation of charge conservation

= Novelty of this work:

v/ Uses discrete exterior calculus (DEC) for consistent discretization
¢/ Obtains exact charge conservation on unstructured mesh

from the first principle.

12



Maxwell’s Equations in Differential Forms

Exterior
derivative

@2 -

oD

Hodge star
operator

D =[x¥ B:}

E=FE,dr+ FE

E=FEx+E)y

Tonti diggrimiar'e)

d
\@‘@t/ e xu]
a— ¢

Orientation:

ydy +
o

B = B,dy N\ dz 4+ Bydz N dz + B,dx A dy

B=B,x+ B,y + B,z

(easily
Whitney forms
|, constitutive relations 0-form w (0
dlv
1-form w®
o
@ // 2-form w®
|5
@at 3-form W

Original form

Twisted form consistent discretization



Maxwell’s Equations in Differential Forms

in primal mesh Degrees of freedom (DoF) in dual mesh
ZE ()W (r ZD W (&
) (y Nl 57(1)
ZB L H(r,t) ~ > H; (t) W (r)
j=1
W ( t: 57(2)
Zﬂm I, )~y I )W ()
k=1
No Na 5
Q. ()~ > Q. )W (x) Qr,t)~ Y Q)W (r)
i=1 I=1
i |W1§2)'“k|
Whitney
t
forms

k — th face



Discrete Exterior Calculus (DEC)

Cell complex in unstructured grids (in 3-D space)

3 No N, N> N3
T — @v(n) 7(o) _ Zaz@) 7(1) _ 2‘75'1) 7(2) _ 20122) ’Y(?’) _ 201(3)
n=0 i=1 j=1 k=1 =1

time
OB Leapfrog time integration  gjscretization

W& =3 |

: : Linear systems for DoFs
9D Flel4de))an3|ons ? (discrete counterparts of Maxwell’s egn.)
o Y

<a§p),w p)

)=
(

discretization <O_§p) | dw§p— 1) >

j (pairing [] contraction)

80(p ) > (generalized Stokes’ theorem)



Coarse-Grained f(x,v,t) :

: “Super-Particle”

- Discrete representations of Maxwell's equations

B"** = [B]"

— At [Dcurl] [ ]

_
E

implicit [ Decyr1]is incidence matrix.

(topological and metric-free)

« Discrete constitutive relations
=[x Bl

1 1
[*G]J,jZELWS)-W§ Jav T
v

o e = ul/ﬂ“’ﬁ?) W

Leapfrog time integration

L s
L ath b
B"" [E" [B": [E"
el s -
| | | —
\_ b1 tn bptl  lntl -

are discrete Hodge matrices.
(constitutive relations and all metric info.)

* symmetric / positive-definite / symplectic
1 Conditionally stable, energy-conserving



Coarse-Grained f(x,v,t) : “Super-Particle”

~1
W 1 1 *
Q[ E]ij_e/ﬂ '(])' ”5)6” xe

dominantly-diagonal and sparse

LU decomposition

e e ___ *' e -- J™ edge

positive definite.: ; e TE
N 0 ~ 400 600
0 200 400 600 Row

Row = u
Inversion is costly and Full !

® Why [x.] is sparse?
. = Mass lumping (diagonalization) :
@ their supports are compact. It destroys positive definiteness leading to

@ some pairs are overlapping. unconditionally unstable.



Coarse-Grained f(x,v,t) : “Super-Particle”

[*6]_1 is strongly localized [1] . Algebraic thresholding
s - Topological thresholding

= Level of neighbor edges : k

1
= | ! 1 I
=N © ® o & N O N
2

localization degree
(log scale)

{ = Sparsity ([*6];1> = Sparsity ([*e]k)
- Least square method for
—1
xelo - bre] — ]

symmetric, positive definite, easily parallelizable

[1] B. He and F. L. Teixeira, IEEE Trans. Antennas Propag.,
vol. 55, pp. 1359-1368 (2007).



Coarse-Grained f(x,v,t) : “Super-Particle”

- Interpolation of electric field at particle’s position via Whitney 1-forms:

Nq

B(p, ta) = Bf = ) EPW™(xp)
=1

g
,//

Similarly, B can be evaluated
with Whitney 2-forms.

N\
\
.ﬂ.
‘
|
+
y
!
L}
=¥ J



Coarse-Grained f(x,v,t) : “Super-Particle”

- Plasma kinetic simulations are Nonlinear & Long-time evolution.

. . Computational efficiency \
Hamiltonian : a
. Numerical 1.  Explicit . . o
dynamical == il e -, Symplectic [°" arbitrary field distribution
systems ‘{'MV \ Stringent condition for energy conservation
Phase space volume preserving (desirable for long time evolution)
K (relaxed condition for energy conservation) /

- Time derivatives are discretized through central difference m"eth\od as

1 1 //""/\\
cvitE oy A e (EP _|_ x B?), SN
My S b
1 n—l—l ,'I, ': \“\ l'.
XZ+ == Xg -+ Ath 2 average / B :' \
velocity Ez
. , P |
- Implicit (expensive, accurate) o L3 o
. . vy 27— —x:-g——-- Vp 2 XZ‘,+
- Boris algorithm | | | L
. . . [ [ [ I g
(explicit, phase-volume-preserving) N TR P R A




Coarse-Grained f(x,v,t) : “Super-Particle”

- Decomposition of irrotational and rotational forces (1970)

1 — E
2 —V — € € = q At B:q’Bl
2m0 mo

At/2 = w. At/2

T + oy
AL :27310‘, ; — x B"
6 v — v
t —| = =
an2‘ GE el

= Rotation 6 is product of cyclotron angular frequency w, and At

Explicit and Phase space (PSV) volume preserving



Finite-Element Time-Domain & Exact Charge Conservation

Exact charge conservation inspired from differential
geometry (geometric aspect)

A

Finite-element time-domain scheme based on
Whitney forms and DEC

Identical!

B(r,t)~ > B () W (r)

k=1

ZJ*] (t (1)

=
—~
:S
~
~
l
= I
<. 1
—~
~ |
~
Z
—
~
—~
]
S~—
o= e e

Z Q*z W(O)

B]" "2 = [B]" "2 — At [Den] - [E]"

~~_
_____________________________________________________

D.-Y. Na, H. Moon, Y. A. Omelchenko, and F. L. Teixeira, I[EEE Transactions on Plasma Science, vol. 44, pp. 1353-1362 (2016) 22



Effects of Violation of Charge Conservation
150 [kV]

|_\

—4

13.8
o
=)

13.6 % Spurious
"3 electrostatic

34 % fields
o
w

o
N

D.-Y. Na, H. Moon, Y. A. Omelchenko, and F. L. Teixeira, I[EEE Transactions on Plasma Science, vol. 44, pp. 1353-1362 (2016)



Simulations of Backward-Wave Oscillators

« Power converter from DC to radio frequency

= Non-linear oscillation from beam-structure
interaction via Cherenkov radiation

« Beam bunching and velocity modulation

e Iigh// N = Design procedure of slow-wave structures:
t 4

----------- = A~ mo
L7 N\,

[/ 1 \x\ vl

S N \ o © Speed of electron beam (DC voltage),

Cherenkov

Q-
o™

@ Specification of output radio frequency

]

-
o
a

T
-

adiatio L
(3 ) Designing slow wave structure

frequency [GH
© L N
(9] = (8]
“ \w\

0} ~“~\

O- -

(0]

Q Y

3

5

/ g

' // / , spacecharge N @ Dispersion matching

oo

~

| i k\)
025 05 0.75 1.5 1.75
normalized wavenumber, k,C /7

D.-Y. Na, Y. A. Omelchenko, H. Moon, B. H. V. Borges, and F. L. Teixeira, Journal of Computational Physics, vol. 346, pp. 295-317 (2017) ”



Simulations of Backward-Wave Oscillators (cont.)
p

electron beam distribution

bunching effects

perfect ) _ - )
/ (velocity modulation)

electric conductor

slow-wave structure section

collector

1

\

8.130
8.033
7.908
7.732
7.432
4.896

cathode

[w/ngpl]
Ayisuajul pjay ou3o9|3

output voltage spectrum

T

10°¢ RF oscillation
at 15.575 GHz

ge signal

T

saturated

[A] % x [enuajod ouose

o)
el
=
2
S
©
. 5
2 ©
s @
£ 0 g 1072 good mode purity
' B
N
(1]
£ 107
0. S
z
decelerated
0.5 i . L L L L L L L L L s L L L L 10—4 L L L L L
20 40 60 80 100 120 140 160 0 10 20 30 40 50 60 70 80 5 10 15 20 25 30

z [mm] Time [ns] Frequency [GHz]



Quantum Optics/Electromagnetics

Photonic Quantum Computer uantum Radar Technolo

Entangled Photons

Classical Radar Qu

antum Radar (no target)

Quantum Radar (target)

(S
\
/)

= Amplification

detection

& N (g
% Correlated photon pair; nhmon%

g ©

[¥-) = ZS(H)|V) - |V)|H))

§
g
3
& 2,
S
f ]
8 A (@
_
Correlated photon pair; photon 2

Retrieved from [6]

Quantum theory of electromagnetic fields
(randomness, second quantization)

Photonic QC, quantum imaging/radar technology
(superposition and entanglement of photons)

Enhanced performance against classical counterparts
(super-resolution and beating noises)

[6] L. S. Madsen et al., Nature, vol. 606, pp. 75-81 (2022).
[7] https://www.aeropolaris.com/quantum-science-technology
[8] M. Rezai et al., Optica, vol. 6, pp. 34-40 (2019).

Retrieved from [7] Retrieved from [8]

Two main challenges:

- Hardware needs to be matured much more.

(e.g., single-photon sources, detections, storing, &
producing microwave photons)

- Lack of numerical/theoretical frameworks to study
scattering and propagation properties of non-classical
EM fields, which needs

(1) building an appropriate math-physics model, and
(2) applying optimized CEM methods.

26



Quantization of Electromagnetic Fields via Numerical Mode Decomposition

= Quantum theory of electromagnetic fields in the free space (Hermitian) has been well-grounded.
- Hamiltonian framework, finding eigenmodes (diagonalization), and subsequent quantization

= How to describe the scattering of (entangled) photons in the presence of dielectric objects?
- Via numerical eigenmodes encoding all the scattering and mode-conversion process

Bloch-periodic boundary condition\\

VXM—VXEM( r) — w2e(r)E,a(r) =0
0
l CEM methods

S.e = M - e - (DQ Generalized Hermitian eigenvalue problem

e

___________________________

(a A a(w, \) + %1)

0

D.-Y. Na, J. Zhu, W. C. Chew, and F. L. Teixeira, Physical Review A, vol. 103, p. 013711 (2020) .



Hong-Ou-Mandel (HOM) Effect

equa"y photodetection entangled

divided 50 % il
1 6%

S \
~~ \
\
N
\
\
\
\

output beam

~~__entangled
classical Bag

single photon

LR

beam

. W 50%
.

" 21)hoto(lvtoct ion

)
(00\‘9 ® single photon

output
beam

classical beam

classical quantum

1D problem geometry

(51’0

50:50 BS

xp=xy 2'p

= Underlying principle of Hadamard (H) gate

photodetection

1 2
T !

Coincidence: g(7)

T is a time delay b/w
the two input photons.

B e — i . pr—
"i".’ :ji.

0.8
0.6
S 04
Analytic (Gaussian)
©  FEM (Gaussian)
0.2 4 x  FDM (Gaussian)
Bl | Analytic (Lorentzian)
¢ o  FEM (Lorentzian)
Y FOM (Lorentzian) |
2 1 0 1 2

D.-Y. Na, J. Zhu, W. C. Chew, and F. L. Teixeira, Physical Review A, vol. 103, p. 013711 (2020)
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Extension into Cases Involving Dispersive Media

Diagonalization of an explicit model where EM fields interact with auxiliary polarization fields.

Hamilton equations of motion

0A OH 1
= = —(II P
875 (SHA 60( A+ >,
OI1 4 OH 1
It __E__VXQVXA,

oP  O0H ¢
ot p  pB(r)
Oy _ GH 1 Jw)
) A €0

New canonical transformation

q = [Aa HP]Ta

D.-Y. Na, J. Zhu, and W. C. Chew, Physical Review A, vol. 103, p. 063707 (2021)

P/

K . (]w)\(r) = wZM_

1

- QA (T)

Generalized Hermitian eigenvalue problem

|y = [HAP7 _P]T 3

ields

Electromagneti
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Non-Local Dispersion Cancellation

coincidence

Bloch PBC Bloch PBC

;
y

/ ..
T T T T > T

I I
—-L/2 2 zy Tr 1 L/2

Frequency-entangled photons (signal/idler)
Opposite signs of the second-order dispersions

8400 idler \ ," signal
photon ¢ photon
3200 ¢

1600 1

800

1 d?k,

ws/c
=2l dw?

400 |

Bw)

200 r

100 |

50 —= ' . ' =
26 28 30 32 34 36 38 40 25 30 35 40 45

wr/c w/e

Long-distance quantum communication

m (a) (b) kil DI

A

~ = Twe Aoy
@; o] h| Two-photon |, /1% cce
N y source I

1 T
------ free space
o ﬁ[

v 08} x B |
S r
§ [3I and ,Hr
2 06 ]
IS
)
r-d - .
g 04l Dispersion |
= cancellated
g
~
S o02f

0( ox2E= 1 < e

-10 -5 0 B 10

D.-Y. Na, J. Zhu, and W. C. Chew, Physical Review A4, vol. 103, p. 063707 (2021)



Numerical Framework for New Langevin Noise (LN) Formalism

Non-Hermitian EM systems cannot be * Fluctuation-dissipation theorem
qguantized through the traditional procedure. - Quasi-Hermiticity (in an ensemble sense)
- Losses can be compensated by fluctuations
A "k'k * New Langevin noise formulation
l¥< ke e SV * Finite-element method modeling
\ /’/l’)oundary-assisted field h 4 at w
k=lkl=w/c /,’ (ke S, A e{1,2}) \\\
& % / IOS’/SY dielectrics ™ New LN formalism: E™(r,w) = EEE)A) (r,w) + Eg\’,} ) (r,w)
' w, o ;ﬂ \ -3 hw
- SN : £ (+) . .
‘ , B, (r,w) =i (V2r) /a’k > @y (kA w)y| Sod(k, 4, w)
\ ey i ; (BA)\ ™ (tot) (L, B, A, s /Ly 5
v s \z\.;f P Sk 1e{1,2) 2
T<'y B s - (+) w? . R ]
L dium-assisted field E(;\-/IA) (r,w) = = dr’ Z (G(r’ r',w) f) —e (U, 0) f(r', ¢, w),
\\ mlu luIYIl—dbbl.SI('( eld /, c v ﬂf()
S, v (v € Vin,€ € {z,9,2}) A m £e{x,y,z}
e A(w) = / dk Y hwil (k4 w)ak 1 w) +/ ar' > hefi(r Ew) f(éw).
Sk 2e{1,2) Vin £efx,y.z}

D. Y. Na, T. E. Roth, J. Zhu, W. C. Chew, and C. J. Ryu, “Numerical Framework for Modeling Quantum Electromagnetic

Systems Involving Finite-Sized Lossy Dielectric Objects in Free Space,” Preprint (10.48550/arXiv.2205.03388), 2023. 31



* Plane-wave-scattering problem

scattered fields

lossy dielectrics
1n01dont

! plane wave
! (ke S, e {1,2)) vacuum
1

._ﬁesh

___________________________________________________________

perfectly matched layer

FEM Modeling of Plane-Wave-Scattering & Point-Source-Radiation Problems

* Point-source-radiation problem

(I)(tOt) (ra ka /la CL))

vacuum . '
lossy dielectricst

mesh . /
ﬁ e(r,w) ),J"H:HIH‘,

S
Vin /J‘(i M,

point source radiation
(r' € Vi, € € {z,9,2})

perfectly matched layer

E(r, r',w)




Quantum Plasmonic Hong-Ou-Mandel Effects

D. Y. Na, T. E. Roth, J. Zhu, and W. C. Chew, “Numerical Framework for New Langevin Noise Model:

= B
>
-
—
— >
single photon
single photon
_ dr=cxXT 5 h
g y
grating coupler  plasmonic beam splitter grating coupler T_,,,;
¥ “a
SPP SPP
interference of SPPs
(Tasta) m (rs,tp)
(r,.in)g g(r,«ta)
J out-coupled free field I

\

y time

Plasmonic HOM effect

[ longitudinal FWHM

—&— w/ plasmonic BS (out-coupled free fields)
—%— w/ plasmonic BS (SPP fields)
—8— w/o plasmonic BS

Initial single photon

classical limit

0.01 0.02 0.03 0.04 0.05

Applications to Plasmonic Hong-Ou-Mandel Effects,” Preprint, (10.48550/arXiv.2205.03388), 2022

Initial single photon
longitudinal FWHM




Concluding Remarks

Q ‘Multiphysics’ Electromagnetics (Modeling High Energy Plasma Systems)
- Charge-conserving electromagnetic Particle-in-Cell algorithms on irregular grids (differential geometry)
- Finite-Element Time-Domain Scheme (geometric fidelity)
- Proof-of-principle simulations (vacuum diode and backward wave oscillator)

0 Quantum Electromagnetics/Optics
- Canonical quantization via numerical mode decomposition / Langevin noise formalism
- Numerical verifications of (plasmonic) Hong-Ou-Mandel effects
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